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Identification of representative sampling sites is a critical issue in establishing an effective water quality

monitoring program. This is especially important at the urban–agriculture interface where water

quality conditions can change rapidly over short distances. The objective of this research was to

optimize the spatial allocation of discrete monitoring sites for synoptic water quality monitoring

through analysis of continuous longitudinal monitoring data collected by attaching a water quality

sonde and GPS to a boat. Sampling was conducted six times from March to October 2009 along a 6.5

km segment of the Wen-Rui Tang River in eastern China that represented an urban–agricultural

interface. When travelling at a velocity of �2.4 km h�1, this resulted in water quality measurements at

�20 m interval. Ammonia nitrogen (NH4
+–N), electrical conductivity (EC), dissolved oxygen (DO),

and turbidity data were collected and analyzed using Cluster Analysis (CA) to identify optimal

locations for establishment of long-term monitoring sites. The analysis identified two distinct water

quality segments for NH4
+–N and EC and three distinct segments for DO and turbidity. According to

our research results, the current fixed-location sampling sites should be adjusted to more effectively

capture the distinct differences in the spatial distribution of water quality conditions. In addition, this

methodology identified river reaches that require more comprehensive study of the factors leading to

the changes in water quality within the identified river segment. The study demonstrates that

continuous longitudinal monitoring can be a highly effective method for optimizing monitoring site

locations for water quality studies.
1. Introduction

Water quality monitoring at the regional scale is an important

component of water resource management, conservation,

protection, and remediation.1,2 A well-designed monitoring

program can help reduce the cost of data collection and optimize

information return on the monitoring investment. Selection of
aThe Environmental Geographic Information System Laboratory, School of
Environmental Science and Public Health, Wenzhou Medical College,
Wenzhou, 325035, China. E-mail: mhz.gis@gmail.com; Tel: +81 0577
8669 9595
bDepartment of Land, Air and Water Resources, University of California,
Davis, California, 95616, USA

Environmental impact

With the rapid economic development in China, water quality has b

watershed have been polluted, of which Wen-Rui Tang River is one

resource management, protection and remediation, an efficient m

a longitudinal water quality monitoring approach combined with sta

sites. The analysis results showed that our method is both scient

monitoring sites for water quality assessment in Wen-Rui Tang Ri
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sample sites for many early water quality monitoring programs

(during the 1960s) was often determined by arbitrary approaches

(e.g., bridge access) or personal knowledge of watershed condi-

tions. Once monitoring sites were set, there was commonly no

assessment of the monitoring network design effectiveness.3–7

An optimal design of water quality monitoring networks and

efficiency improvements have been the subject of research since

the 1970s,8 and beginning in 1980s several approaches were

evaluated to improve the design criteria and monitoring effi-

ciency.9 Following these preliminary studies, research focused on

identifying the location of water quality monitoring stations for

contrasting objectives, such as trend detection and remediation

effectiveness monitoring.1 More recent studies using multiple
een compromised. Our study showed that over 90% rivers in the

of the major polluted rivers in the city. In order to benefit water

onitoring system should be developed. In this study, we used

tistical method to optimize the locations of discrete monitoring

ifically and economically valuable for locating representative

ver watershed.
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statistical methods, genetic algorithms, and GIS tools have been

used to identify monitoring sites.10–21 Khalil provided a compre-

hensive review of statistical approaches for assessing and

designing water quality monitoring networks.22

An important goal of water quality monitoring at the regional

scale is to adequately characterize source area contributions with

the fewest number of sample locations, therefore minimizing the

monitoring cost. A source-search protocol has historically been

employed as an efficient initial step to help identify spatial

patterns in water quality parameters at discrete (fixed) sites

within a given watershed.23 The source-search technique involves

periodic grab sampling (synoptic sampling) of representative

sub-basins to determine concentrations/fluxes from the range of

physical environments contained within the region. The search-

source methodology becomes challenging at land-use interfaces

as water quality conditions can change rapidly in both spatial

and temporal dimensions.24–27 Thus, a dense monitoring network

would be required in areas with rapidly changing water quality

conditions, such as highly populated regions, highly industrial-

ized areas, or rapidly changing land-use conditions.8 On the

contrary, a single monitoring site may be sufficient in areas with

stable water quality conditions. Therefore, methodologies for

establishing effective monitoring networks remain a critical issue

in water quality monitoring.

To address the multiple challenges associated with water

quality monitoring across land-use interfaces (urban, agricul-

tural, wetland), we examined the use of continuous longitudinal

monitoring as a technique for optimizing spatial allocation of

discrete monitoring sites within a regional water quality moni-

toring program. Longitudinal water quality acquisition is easily

accomplished by coupling modern water quality sonde/sensor

instrumentation and precision global positioning systems (GPS).

Water quality sondes with multiple sensors can be attached

directly to a boat for evaluation of the upper water column or

submersible pumps can be attached to a boom at one or more
Fig. 1 Land-use map of Wen-Rui Tang River watershed and

2756 | J. Environ. Monit., 2011, 13, 2755–2762
depths to pump water through a flow-through cell containing

a water quality sonde that is housed on the boat. Thus, multiple

depths can be profiled in a single pass to determine if the water

column is stratified. Water quality sondes can be programmed to

collect data at a rapid frequency allowing detailed spatial anal-

ysis; for example �20 m resolution for a travel velocity of 7 km

h�1 using a 10 second data acquisition time. Location data can be

synchronized with either an internal or an external GPS unit. At

the end of a monitoring run, water quality and GPS data can be

rapidly downloaded into a GIS for spatial analysis.

The primary objective of this paper is to demonstrate the use of

continuous longitudinal water quality monitoring to optimize

the location of discrete water quality monitoring sites in a study

area located at an urban–agricultural–wetland interface in

eastern China. The continuous longitudinal water quality data

were incorporated into a GIS platform to facilitate a hierarchical

cluster analysis to identify locations for implementation of

a traditional synoptic water quality monitoring program. This

approach provides a statistically defensible method to optimize

discrete monitoring sites (reduce redundancy and eliminate data

gaps) without losing key statistical information.
2. Methods

2.1 Study area

The Wen-Rui Tang River watershed is located at Wenzhou,

Zhejiang Province, on the east coast of China (Fig. 1). The

mainstem of the Wen-Rui Tang River has a length of 20.4 km

within the urban area and connects to a network of inter-

connecting urban waterways with a total length of 1178 km. The

average width of the urban portion of theWen-Rui Tang River is

about 50 m, with a range of 13 to 150 m. More than 75% of the

watershed consists of a flat alluvial plain with elevations ranging

from 3.0 to 4.2 m. The area has a subtropical oceanic climate
water quality monitoring sites located in the studied reach.

This journal is ª The Royal Society of Chemistry 2011
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with an average annual rainfall of 1685 mm and annual runoff of

0.91 billion m3. This study occurred along a 6.5 km reach on the

mainstem of the river that transects urban land, agricultural

land, and wetland uses.

Previous fixed-site, water quality monitoring sites were

established along the studied reach by the Wenzhou Environ-

mental Protection Bureau (WEPB) since 2000, the Wenzhou

Water Conservation Bureau (WWCB) since 2006, and Wenz-

hou Medical College (WZMC) since 2008 (Table 1). The

monitoring sites Misiqiao, S22, A4, and S19 are located in the

urban area, stations A5, Wutian, S20, A6, S21 are in the rural–

agricultural area, and station A7 is in an area surrounded by

wetlands.
2.2 Continuous longitudinal sampling technique for data

collection

A continuous, longitudinal water quality sampling technique was

used to examine spatial patterns in water quality parameters in

the 6.5 km river reach containing the discrete water quality

collection sites from previous monitoring programs. A YSI 6920

multi-parameter water quality sonde (YSI Inc., OH, USA) was

attached to a boom at a 1 m depth from a motor boat and the

location was determined with a Trimble GEO-XH2005 GPS

(Trimble Navigation Limited, Sunnyvale, CA). The YSI sonde

was used to collect water quality data in real time for pH, water

temperature, dissolved oxygen (DO), total ammonia nitrogen

(NH4
+–N), electrical conductivity (EC) and turbidity. Each

water quality parameter was calibrated prior to data acquisition

and the calibration was verified at the end of the sampling period

(�3 h). Sampling of the 6.5 km river reach was conducted six

times from March to October 2009 and included representative

hydrologic conditions across both wet and dry seasons: 10
Table 1 Description of WEPB, WWCB and WZMC sampling stations at th

Station Coordinates Sampling interval

WEPB Once per two months
Apr. 2000 to Dec. 20Misiqiao 120�400030 0E

27�590470 0N
Wutian 120�400300 0E

27�580140 0N
WWCB Once a month from

Apr. 2006 to Mar. 20S22 120�400000 0E
27�590350 0N

S19 120�400010 0E
27�590350 0N

S20 120�400270 0E
27�580350 0N

S21 120�400440 0E
27�570430 0N

WZMC Once a month from
Jan. 2009 to Dec. 201A4 120�400130 0E

27�590260 0N
A5 120�400200 0E

27�590010 0N
A6 120�400360 0E

27�580070 0N
A7 120�410020 0E

27�560110 0N

a Note: TSS ¼ total suspended solids, EC ¼ electrical conductivity, DO ¼ di
oxygen demand, TN ¼ total nitrogen, PO4

3�–P ¼ phosphate, TOC ¼ total o

This journal is ª The Royal Society of Chemistry 2011
March, 28 April, 28 May, 20 July, 29 August and 3 October. The

YSI sonde was programmed to take measurements at a 30 second

frequency resulting in measurements at about a 20 m interval

when the boat was travelling at a velocity of 2.4 km h�1. This

sampling protocol resulted in 325 water quality data points along

the 6.5 km river reach. Water quality data were continuously

examined by the boat operator using a YSI 650 Multiparameter

Display System which allowed for immediate re-examination of

questionable data (river section was re-measured) to ensure data

quality. During selected sampling events, we also pumped water

from a 2 m depth, using a submersible pump, through a flow-

through cell housing the YSI sonde to determine whether strat-

ification in water quality conditions existed within the water

column. No differences were found between the 1 and 2 m depths

for this river reach, therefore only the data for the 1 m depth are

used in this analysis.

The YSI water quality sonde and the GPS unit were time-

synchronized to provide location data for each water quality

measurement (precision of �30 cm). At the end of a sampling

event, water quality and GPS data were downloaded into a GIS

desktop for spatial analysis. Some location data were lost under

bridges where the satellite signal was not available. In these cases,

a linear interpolation for the missing sampling sites was calcu-

lated from adjacent known locations.
2.3 Data preprocessing

Water quality data were required to be pre-processed before data

analysis because differences in the boat speed, travel routes and

sampling time interval resulted in differences in the total numbers

of sampling measurements of each sampling event: March¼ 313,

April ¼ 381, May ¼ 554, July ¼ 659, August¼ 494, and October

¼ 187. Since differences in absolute sampling site locations
e study areaa

Water quality parameters

from
10

Water temperature (WT), pH, TSS, EC, DO,
CODMn, BOD, NH4

+–N, NO3
�–N, NO2

�–N,
volatile phenol, CN compounds, arsenic (As),
mercury (Hg), chromium (Cr), lead (Pb),
cadmium (Cd), petroleum, TP.

07
DO, BOD, CODMn, pH, NH4

+–N, TN.

0
WT, pH, DO, EC, turbidity, NH4

+–N, NO3
�–N,

NO2
�–N, PO4

3�–P, TOC, TN, CODCr, total
bacterial, coliform, E. coli, Salmonella.

ssolved oxygen, COD ¼ chemical oxygen demand, BOD ¼ biochemical
rganic carbon.

J. Environ. Monit., 2011, 13, 2755–2762 | 2757

http://dx.doi.org/10.1039/c1em10352k


D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
D

av
is

 o
n 

04
 M

ar
ch

 2
01

2
Pu

bl
is

he
d 

on
 1

3 
Se

pt
em

be
r 

20
11

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1E
M

10
35

2K

View Online
hinder statistical analyses, the data were re-sampled by the

nearest point method. The middle line of the river was divided

into 129 sections with 130 link points. Those link points were

taken as the re-sampling sites and the water quality data from

nearby sampling sites were assigned to those points. Thus, the

final dataset consisted of 130 sample locations for 6 water quality

parameters and 6 sample times (data matrix ¼ 130 � 6 � 6). In

terms of land use, Sites 1–22 represent the urban area, Sites 23–90

represent the rural–agricultural area, and Sites 91–130 represent

the wetland area. The Kolmogorov–Smirnov (K–S) statistic was

used to test the goodness-of-fit of the data to a normal distri-

bution using the Tinn-R tool.28 Data that were not normally

distributed were transformed to normality using log trans-

formation for further analysis.
2.4 Statistical analysis

Cluster analysis (CA) is a method of unsupervised learning used

to assign a set of objects into clusters so that objects in the same

cluster are similar in some aspects.29 An important step in clus-

tering is to select a distance measure that will determine how the

similarity of two objects is calculated. This will influence the

formation of the clusters, as some objects may be close to one

another according to one distance and farther away according to

another.30 The distance measure chosen in this study was the

Euclidean distance which should only be used for expression data

that are suitably normalized.

Hierarchical cluster analysis (HCA) was employed to the water

quality data matrix to investigate the grouping of continuous

longitudinal sampling sites within the 6.5 km study area. It is

a general approach to cluster analysis, which provides intuitive

similarity relationships between any one object and the entire

dataset. A key component of the analysis is the repeated calcu-

lation of distance measures between objects, and between clusters

once objects begin to be grouped into clusters. The outcome is

represented graphically as a dendrogram.31 The initial data for

the hierarchical cluster analysis ofN objects are a set ofN� (N�
1)/2 object-to-object distances and a linkage function for

computation of the cluster-to-cluster distances. The two main

categories of methods for HCA are divisive methods and

agglomerative methods. In practice, the agglomerative methods

are of wider use. For each step, the pair of clusters with the

smallest cluster-to-cluster distance is fused into a single cluster.

The method used in this paper is Ward’s Linkage.32 The linkage

function specifying the distance between two clusters is

computed as the increase in the ‘‘error sum of squares’’ (ESS)

after grouping two clusters into a single cluster. Ward’s method

seeks to choose the successive clustering steps so as to minimize

the increase in ESS at each step. The ESS of a set X of NX values

is the sum of squares of the deviations from the mean value or the

mean vector (centroid). For a set X, the ESS is described by the

following expression:33

ESSðXÞ ¼
XNX

i¼1

�����xi � 1

NX

XNX

j¼1

xj

�����

2

where, |$| is the absolute value of a scalar value or the norm (the

‘‘length’’) of a vector. The distance between clusters X and Y is

described by the following expression:
2758 | J. Environ. Monit., 2011, 13, 2755–2762
D(X,Y) ¼ ESS(XY) � [ESS(X) + ESS(Y)]

where, XY is the combined cluster resulting from fusion of

clusters X and Y; ESS($) is the error sum of squares described

above. SYSTAT 12.0 (Systat Software, Inc., San Jose, CA) was

used for cluster analysis.

A final component of this study was to determine whether

water quality parameters measured by the YSI sonde could serve

as proxies for more difficult to measure constituents (e.g.

turbidity for total phosphorus (TP), NH4
+�N for chemical

oxygen demand (COD)). The existence of strong relationships

between constituents measured by continuous, longitudinal

monitoring would allow for other constituents to be potentially

assessed from the continuous, longitudinal monitoring as well.

Spearman’s rank correlation coefficients were calculated for all

possible correlations among measured constituents.
3. Results

3.1 Data collected by longitudinal continuous sampling

The continuous, longitudinal sampling, which was conducted

from March to October 2009, reflected the impact of seasonal

variation on water quality. The atmospheric temperature during

the study period ranged from 6.7 �C in March to 32.9 �C in July.

The total precipitation from March to October was 1377 mm,

while total precipitation of 2009 was 1611 mm. The highest

monthly precipitation occurred in August (404 mm) resulting

from a typhoon and approximately 60% of the total annual

precipitation occurred between June and September (Fig. 2).

The spatial trends for NH4
+–N, EC, DO and turbidity are

shown in Fig. 3. Water temperature and pH were not evaluated

as they displayed no direct relationship with water pollutants in

the study area.

Ammonia nitrogen. NH4
+–N in the study area originates

primarily from untreated human and animal wastes entering the

waterways. The spatial and temporal patterns of NH4
+–N reveal

serious contamination of surface water, with NH4
+–N values

generally above 2 mg L�1 (Fig. 3a). NH4
+–N concentrations

above 2 mg L�1 exceed Level V—the maximum level for surface

water quality established by Chinese Law.34 The October 2009

data for NH4
+–N are not shown because the NH4

+–N sensor did

not meet our quality control requirements. NH4
+–N concentra-

tions showed a general increase in the downstream direction

indicating increased loading during transport through the study

area. The lowest NH4
+–N concentrations were in August

following the typhoon, which caused dilution and appreciable

flushing of pollutants from the river system. In contrast, the

highest NH4
+–N concentrations were found in late April

following an extended dry period.

Electrical conductivity. The cations and anions contributing to

EC originate primarily from human (e.g., cooking with salt) and

industrial activities. The spatial pattern for EC was similar for

each month (Fig. 3b) with increasing EC values to near Site 85

followed by relatively stable values to the end of the study area.

The lowest EC values (<250 mS cm�1) occurred in October

following the rainy season while the highest EC values (>550 mS
This journal is ª The Royal Society of Chemistry 2011
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Fig. 2 Time series plot of precipitation and temperature during the study period. Six continuous, longitudinal sampling events conducted on the

following dates (red vertical bars): 10 March, 28 April, 28 May, 20 July, 29 August and 3 October in 2009.
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cm�1) were in April following the dry season. While the August

typhoon appeared to flush and dilute the NH4
+–N concentra-

tions in the waterways, the typhoon appeared to flush salts into

the urban waterways resulting in higher EC values than might be

expected.

Dissolved oxygen.DO was consistently below water saturation

values for a given water temperature (100% saturation is water in

equilibrium with atmospheric oxygen concentration) due to the

high biological oxygen demand (BOD) resulting from organic

matter and ammonia inputs from human and industrial wastes

(Fig. 3c). Most waters were strongly impaired with respect to DO

values, falling below the minimum Level V water quality stan-

dard for surface waters of less than 20% saturation (less than

about 2 mg L�1). Spatially, the lowest DO values (<5% DO

saturation) were consistently found around Site 61. Temporally,

the highest DO values were in April and appeared to be associ-

ated with an active algal bloom in which algae contributed

oxygen to the water column through photosynthesis.

Turbidity. Turbidity originates from particulate matter

(organic and inorganic) suspended in the water column and is

therefore a good proxy for total suspended solids (TSS) in the

water column. Since several other water quality parameters are

associated with suspended sediments (e.g., pesticides, heavy

metals, phosphorus), turbidity may serve as a proxy for several

other pollutants. Spatially, turbidity values were relatively

similar throughout the study area in March, April, and July,

while they showed a general decline in the downstream direction

during May and October (Fig. 3d). The large spike in turbidity

values in August is related to the typhoon that resulted in large

inputs of sediments to the rural–agricultural river segment.
3.2 Classification of sampling sites

Considering sampling sites as cases and NH4
+–N, EC, DO or

turbidity values for each of the six sampling times as variables,

the analysis resulted in the grouping of sampling sites into two or
This journal is ª The Royal Society of Chemistry 2011
three clusters based on the different water quality parameters

(Fig. 4). Visual assessment in GIS revealed that the sampling sites

in these clusters share similar characteristics (e.g. land use,

location of point and non-point pollution sources, etc.) (Fig. 5).

These results indicate that for synoptic sampling of water quality,

one site in each cluster is needed to represent a reasonably

accurate spatial assessment of each water quality parameter.

Ammonia nitrogen. According to NH4
+–N values, sampling

sites were classified into two clusters (Fig. 4a). Sites 1 to 68 and

Sites 84 to 87 were grouped as Cluster 1, while Sites 69 to 83 and

Sites 88 to 130 were grouped as Cluster 2. A t-test showed that

the Cluster 1 mean value was lower than that of Cluster 2 (p <

0.001). The t-test result confirms that classification of the two

sampling clusters was reasonable.

Electrical conductivity. Sampling sites for EC values were also

classified into two distinct clusters (Fig. 4b). The EC values in

Cluster 1 (Site 1 to 67) were lower than in Cluster 2 (Sites 68 to

130). A t-test confirmed a significant difference (p < 0.001) in

monthly EC values and average EC values between Cluster 1 and

Cluster 2.

Dissolved oxygen. DO values segregated into three clusters

(Fig. 4c): Sites 1 to 53 identified as Cluster 1, Sites 54 to 89

identified as Cluster 2, and remaining sites identified as Cluster 3.

Analysis of variance (ANOVA) was used to test the difference

among means for these clusters. The results showed that there

were significant differences (p < 0.001) between Cluster 1 and

Cluster 2 and between Cluster 2 and Cluster 3 (p < 0.001),

however, no significant difference was identified between Cluster

1 and Cluster 3 (p > 0.10). The DO values in Cluster 2 were lower

than in the other two clusters.

Turbidity. In contrast to dissolved oxygen, turbidity values

displayed a more complex clustering with Sites 1 to 61 classified

into Cluster 1, Sites 86 to 102 classified into Cluster 3, and other

sites classified into Cluster 2 (Fig. 4d). The results of the ANOVA
J. Environ. Monit., 2011, 13, 2755–2762 | 2759
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Fig. 3 The spatial and temporal trends of water quality parameter

concentration: (a) NH4
+–N, (b) EC, (c) DO and (d) turbidity.

Fig. 4 Dendrogram showing different clusters of sampling sites based

on different water quality parameters: (a) NH4
+–N, (b) EC, (c) DO and

(d) turbidity.

Fig. 5 Spatial distribution of sampling site clusters based on (a) NH4
+–

N, (b) EC, (c) DO and (d) turbidity values.
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showed that there were significant differences among these

clusters (p < 0.001).
3.3 Relationships of water quality parameters

In correlation analysis, longitudinal continuous sampling data

and fixed-site sampling data from WZMC monitoring stations

(A4, A5, A6 and A7) were used to determine whether the

continuous data could be used as a proxy for other water quality

constituents. Ten water quality parameters (EC, NH4
+–N, DO,

turbidity, nitrite (NO2
�–N), nitrate (NO3

�–N), total nitrogen

(TN), phosphate (PO3�–P), total organic carbon (TOC) and
2760 | J. Environ. Monit., 2011, 13, 2755–2762
chemical oxygen demand (CODCr)) were assessed by Spearman’s

rank correlation coefficient (Table 2). EC was positively corre-

lated with NH4
+–N (r ¼ 0.657) and TN (r ¼ 0.607), and nega-

tively correlated with turbidity (r ¼ �0.638). The strong

correlation between NH4
+–N and TN (r ¼ 0.905) revealed that

NH4
+–N was the largest contributor to TN, as compared to

NO2
�–N (r ¼ 0.134) and NO3

�–N (r ¼ �0.171). CODCr showed

positive correlations with NH4
+–N, EC, TN, PO4

3�–P, TOC, and
This journal is ª The Royal Society of Chemistry 2011
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Table 2 Spearman’s rank correlation coefficients between the water quality parameters (n ¼ 39)

r NH4
+–N EC DO Turbidity NO2

�–N NO3
�–N TN PO4

3�–P TOC CODCr

NH4
+–N 1

EC 0.657a 1
DO �0.346c �0.124 1
Turbidity �0.314 �0.638a �0.159 1
NO2

�–N 0.095 0.082 0.143 �0.046 1
NO3

�–N �0.240 �0.105 0.374c �0.203 0.098 1
TN 0.905a 0.607a �0.269 �0.356c 0.134 �0.171 1
PO4

3�–P 0.245 0.510a 0.172 �0.236 �0.115 �0.075 0.351c 1
TOC 0.391c 0.488b 0.112 �0.410b 0.040 0.040 0.526a 0.589a 1
CODCr 0.573a 0.577a �0.256 0.162 �0.547a �0.495b 0.548a 0.462b 0.531 1

a Correlation is statistically significant at the p < 0.001 level.b Correlation is statistically significant at the p < 0.01 level.c Correlation is statistically
significant at the p < 0.05 level.
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especially with NH4
+–N (r ¼ 0.573) and EC (r ¼ 0.577). A

negative correlation existed between CODCr and NO3
�–N (r ¼

�0.485) reflecting the loss of nitrate to denitrification under

anoxic conditions imposed by high oxygen demand. There were

no obvious correlations between DO, turbidity and other

parameters.

These relationships suggest that the continuous monitoring

data (EC, NH4
+–N, DO, turbidity) have limited value for pre-

dicting other water quality constituents (only CODCr and TN

from either EC or NH4
+–N) at this study site. However, many of

these relationships will be site specific, therefore continuously

monitored parameters could possibly serve as proxies for other

water quality constituents in other systems.

4. Discussion

4.1 Spatial and temporal patterns of water quality as affected

by land-use types

The continuous data collected by longitudinal sampling with the

water quality sonde provide a rigorous evaluation of spatial and

temporal patterns for the Wen-Rui Tang River water quality

assessment. Based on these data, it was our objective to provide

a statistically defensible approach to optimize discrete sampling

sites for a synoptic monitoring program along the 6.5 km study

area so as to reduce redundancy and eliminate spatial data gaps.

The HCA results showed that the physical and chemical

parameters evaluated had spatial patterns similar to those iden-

tified in a previous study.35 The spatial distribution of pollutants

appeared to be associated with different land-use types, such as

urban, agricultural, and wetland. Fig. 3 indicates that each

parameter shows an infection point (whether up or down)

around Site 60. The main reasons for this pattern include: (1) this

region is the transitional zone from urban/residential to agri-

culture land use, which means that human activities and pollu-

tion source types are different, and (2) the waterway in this

region passes by a wetland district and the interaction between

the river and wetland affects several water quality parameters.

4.2 Optimization of the synoptic monitoring network

The results of HCA effectively captured the spatial patterns for

water quality constituents. EC and NH4
+–N concentrations were

correlated (r ¼ 0.657) in this study and provided a similar set of
This journal is ª The Royal Society of Chemistry 2011
two clusters: Cluster 1¼ Sites 1–68, Cluster 2¼ Sites 69–130. EC

and NH4
+–N concentrations were relatively stable until they

entered the rural area around Site 60 (Fig. 5a and b). At this

point, concentrations tended to increase reflecting the contribu-

tion from agricultural non-point source pollution and sewage

discharged to the water body without sewage treatment. This

causes the water quality deterioration for EC and NH4
+–N in

Cluster 2. The cluster analysis indicated that one site in each of

the two clusters is enough to reflect the NH4
+–N and EC char-

acteristics of the whole 6.5 km study area. Due to the strong

correlation between NH4
+–N and EC with CODCr, monitoring

for CODCr should also follow a similar spatial strategy.

Three clusters were identified based on DO% saturation

values. Although DO is affected by many factors, the wetland

was found to have a major effect on the spatial patterns of DO in

the study area. DO values were lowest in Cluster 2 when the river

flowed through the rural–agricultural area, and then water

purification by the wetland caused the DO value to increase after

Site 90 (Fig. 5c). This results in the three clusters being separated

as before, in and after the rural–agricultural area, respectively.

This result also implies that for effective synoptic monitoring,

only one station in each cluster is needed to represent the distinct

DO segments of the study area.

The sample site clusters based on turbidity were somewhat

different from the results based on EC, NH4
+–N and DO. The

sampling sites before the river that flowed through the rural–

agricultural area around Site 61 were classified as one cluster as

identified for EC and NH4
+–N; and points in the Sites 62–85

segment were a bit lower and formed a different cluster. Once the

water entered into the rural–agricultural area, turbidity values

increased and formed a separate cluster. After the water passed

through the wetland area (after Site 103), turbidity values

decreased and this segment was clustered into the same group as

Sites 52–85 (Fig. 5d). However, Cluster 3 was separated from

Cluster 2 because of the high values in August. The sampling date

in August was the day after a heavy rain which would lead to

surface erosion. The HCA result without turbidity values of

August was two significantly different clusters (p<0.001): Sites 1–

64 in Cluster 1 and Sites 65–130 in Cluster 2. Therefore,

a minimum of two synoptic monitoring sites is required to char-

acterize the turbidity conditions within the 6.5 km study area.

Based on the integrated analysis for all four continuously

monitored parameters, it appears that establishing synoptic
J. Environ. Monit., 2011, 13, 2755–2762 | 2761
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sampling sites near Sites 30, 70 and 110 would be sufficient to

spatially characterize these constituents. We suggest that the

existing monitoring stations established by the three independent

monitoring programs could be redesigned to reduce costs. The

WEPB program has two monitoring stations in the range of Sites

1 to 60 that belong to Cluster 1. Thus, it would be more effective

to move one of these two stations to the range of Sites 70 to 130.

The WWCB program could remove one station from its four

existing stations. One practical plan is that they can keep stations

S20 and S21, then move one station to the range between Sites

110 and 130. The WZMC program could also eliminate one

station to save the analysis cost. This could be achieved by

keeping A5 and moving A6 down to the range of Sites 70 to 90,

and moving A7 up to the range of Sites 110 to 130.

5. Conclusion

The use of continuous longitudinal monitoring using water

quality sondes was demonstrated to be an effective method for

acquiring data that can be used with HCA to identify discrete

sites for synoptic water quality monitoring networks. The tech-

nique is especially useful along river reaches that experience rapid

changes to water quality conditions due to changing land use

(e.g., urban–agricultural–wetland interfaces). This approach also

provides a statistically defensible method for evaluating the

effectiveness of current synoptic water quality networks and to

optimize designs to reduce redundancy and eliminate data gaps.

Significant correlations between water quality parameters

measurable by water quality sondes and other water quality

constituents that can be measured only in the laboratory could

allow sonde-monitored parameters to serve as proxies for other

constituents. New advances in water quality sonde technologies

(e.g., sensors for chlorophyll, blue-green algal, nitrate, hydro-

carbons, oil, and colored organic matter (CDOM)) will continue

to enhance the capabilities of continuous longitudinal water

quality data acquisition.
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